Технические дисциплины - Электроника

Генераторы электрических сигналов

Назначение и виды генераторов.

Электронным генератором сигналов называют устройство, посредством которого энергия сторонних источников питания преобразуется в электрические колебания требуемой формы, частоты и мощности. Электронные генераторы входят составной частью во многие электронные приборы и системы. Так, например, генераторы гармонических или других форм колебаний используются в универсальных измерительных приборах, осциллографах, микропроцессорных системах, в различных технологических установках и др. В телевизорах генераторы строчной и кадровой разверток используются для формирования светящегося экрана.

Классификация генераторов выполняется по ряду признаков: форме колебаний, их частоте, выходной мощности, назначению, типу используемого активного элемента, виду частотно-избирательной цепи обратной связи и др. По назначению генераторы делят на технологические, измерительные, медицинские, связные. По форме колебаний их делят на генераторы гармонических и негармонических (импульсных) сигналов.

По выходной мощности генератора делят на маломощные (менее 1 Вт), средней мощности (ниже 100 Вт) и мощные (свыше 100 Вт). По частоте генераторы можно разделить на следующие группы: инфранизкочастотные (менее 10Гц), низкочастотные (от 10Гц до 100 кГц), высокочастотные (от 100 кГц до 100МГц) и сверхвысокочастотные (выше 100МГц).

По используемым активным элементам генераторы делят на ламповые, транзисторные, на операционных усилителях, на туннельных диодах, или динисторах, а по типу частотно-избирательных цепей обратной связи — на генераторы LC-, RC- и ^L-типа. Кроме того, обратная связь в генераторах может быть внешней или внутренней.

Принципы построения генераторов.

Генератор является нелинейным устройством, которое преобразует, как уже сказано, энергию постоянного напряжения от источников питания в энергию колебаний. Обобщенная структурная схема генератора с внешней обратной связью приведена на рис..1. Она содержит усилитель с коэффициентом усиления К, частотно-избирательную цепь положительной обратной связи с коэффициентом передачи β и цепь отрицательной обратной связи с коэффициентом передачи m.

Функционирование генератора можно разделить на два этапа: этап возбуждения генератора и этап стационарного режима. На этапе возбуждения колебаний

 

в генераторе появляются колебания и амплитуда их постепенно нарастает. На втором этапе амплитуда колебаний стабилизируется и генератор переходит в стационарный режим. Форма колебаний на обоих этапах показана на рис.

На этапе возбуждения колебаний основную роль играет цепь положительной обратной связи. Эта цепь определяет условие возбуждения колебаний, их частоту и скорость нарастания амплитуды. После возникновения колебаний их амплитуда нарастает до тех пор, пока действие нелинейной отрицательной обратной связи ограничит их рост.

Поскольку на этапе возбуждения цепь отрицательной обратной связи не работает, рассмотрим более простую схему генератора, изображенную на рис.2 Цепь положительной обратной связи b обычно выполняется на пассивных элементах и потому имеет потери. Затухание сигнала в цепи обратной связи компенсируется усилением, которое обеспечивает усилитель У. Рассмотрим условия, при которых в схеме, приведенной на рис.2 а могут возникнуть колебания.

При включении питания в схеме возникают колебания, обусловленные нестационарными процессами — зарядом емкостей и индуктивностей, переходными

Рисунок 2 –Упрощенная схема генератора.

процессами в транзисторах или ОУ. Эти колебания поступают на вход усилителя в виде сигнала UBX и, пройдя усилитель, появляются на его выходе в виде сигнала Uвых=UвхK. С выхода усилителя колебания через цепь положительной обратной связи вновь поступают на вход усилителя, поэтому

Uвых(1-к β)=0,                                           (1)

где К — комплексное значение коэффициента усиления, b — передача цепи обратной связи.

Из уравнения (1) следует, что напряжение на входе усилителя, а следовательно, и на его выходе может иметь конечное значение только при выполнении условия:

1-к β =о,

откуда   находим   условие   возбуждения   колебаний:

к β =1,                                     (2)

где произведение к β называется петлевым усилением усилителя с обратной связью.

Условие возникновения колебаний (2) распадается на два условия, которые принято называть условиями баланса амплитуд и фаз:

к β  =1,                                                 (3)

аrctg(к β) = φ β + φк=0.

Первое из условий (3) означает, что в стационарном режиме полное петлевое усиление на рабочей частоте генератора должно быть равно единице, т. е. модуль коэффициента усиления усилителя должен быть равен модулю обратной величины коэффициента передачи звена положительной обратной связи | К| = | β -1 |. Иначе говоря, насколько сигнал ослабляется при передаче через цепь обратной связи b, настолько же он должен усиливаться усилителем.

Если коэффициент усиления усилителя |K|<|b|, то колебания в схеме генератора будут затухающими, и наоборот, при |K|>|b|,  колебания будут нарастающими, как показано на рис.2 б. Для точного выполнения условия баланса амплитуд в схему генератора вводится отрицательная обратная связь, посредством которой изменяется петлевое усиление. Возможны различные способы регулирования петлевого усиления: изменением коэффициента усиления усилителя, изменением коэффициента передачи цепи положительной обратной связи, изменением коэффициента передачи цепи отрицательной обратной связи. В качестве элементов, регулирующих петлевое усиление, используются или пассивные нелинейные элементы: термисторы, варисторы, позисторы, лампы накаливания и др. или транзисторы в режиме регулируемого сопротивления.

Второе условие (3), называемое условием баланса фаз, означает, что полный фазовый сдвиг в замкнутом контуре генератора должен быть равен 2pn, где n — любое целое число. Условие баланса фаз позволяет определить частоту генерируемых колебаний. Если условие баланса фаз выполняется только на одной частоте, то при выполнении условия баланса амплитуд колебания будут гармоническими. Если условие баланса фаз выполняется для ряда частот, то колебания будут негармоническими.

Кроме рассмотренных генераторов с внешней обратной связью, существуют генераторы с внутренней обратной связью, у которых положительная обратная связь обусловлена устройством используемого активного элемента. К таким элементам относятся некоторые типы полупроводниковых диодов, имеющих участок с отрицательным сопротивлением: динисторы. тиристоры, туннельные диод, а также электронные лампы с вторичной эмиссией. В таких генераторах отрицательное сопротивление активного элемента используется для компенсации положительного сопротивления потерь в пассивных элементах. Эти генераторы могут использоваться как при синусоидальной форме выходного напряжения, так и при негармонических выходных напряжениях. Для формирования гармонических напряжений в таких генераторах обычно используются различные резонансные контуры.

Генераторы гармонических сигналов.

В генераторах гармонических сигналов цепь положительной обратной связи выполняется таким образом, чтобы условие баланса фаз выполнялось на одной единственной частоте, на которой также выполняется условие баланса амплитуд.

Наиболее распространенными генераторами гармонических сигналов являются  генераторы, в которых цепь положительной обратной связи выполнена на последовательных или параллельных резонансных контурах, на фазосдвигающих RC- или RL-цепях. В качестве примера рассмотрим работу генератора на полевом транзисторе с резонансным контуром в цепи стока, рис. 3 а.

Режим работы схемы генератора по постоянному току выбираемся с помощью двух источников питания: источника питания стока Ес и источника смещения затвора Е.,. В схеме использован параллельный колебательный контур, сопротивление  учитывает потери на элементах контура катушке и емкости. Усилитель генератора выполнен па полевом транзисторе с управляемой обратной связью:

 

 

 

Следует отметить еще одну особенность трансформаторной обратной связи. используемой в схеме генератора, приведенной на рис. 3 а. Однополярные концы обмоток трансформатора для возбуждения генератора должны быть включены таким образом, чтобы любое возмущение колебательной системы приводило к появлению сигнала обратной связи, который, складываясь с начальным возмущением, увеличивал бы его. Учитывая, что транзистор изменяет полярность сигнала на противоположную, трансформатор также должен изменять полярность сигнала, с тем, чтобы полный сдвиг фазы составил 2л.

Трехточечные     генераторы.

Кроме генераторов с трансформаторной связью широко применяются схемы, получившие название трехточечных. В этих схемах учтены два основных положения, которые были установлены ранее: 1) для выполнения условия баланса фаз напряжения, действующие на затворе (или базе) и стоке (или коллекторе), должны быть в противофазе; 2) для выполнения баланса амплитуд к затвору (или базе) подводится только часть напряжения па контуре. Упрощенные схемы трехточечных


генераторов приведены на рис. 4. В схеме индуктивной трехточки (а) колебательный контур состоит из двух индуктивностей L1 и L2, включенных последовательно, и емкости Ск. По сути, эта схема идентична схеме с трансформаторной связью, в которой использовано автотрансформаторное включение катушек L1 и L2 В схеме емкостной трехточки вместо трансформаторного делителя использован емкостной делитель, состоящий из двух емкостей С1 и С2.

Для выполнения условия баланса фаз противоположные концы контура включены между стоком и затвором (или между базой и коллектором). Средняя точка индуктивного или емкостного делителя подключена к истоку (или эмиттеру). Полные схемы трехточечных генераторов приведены на рис. 5. На рис. 5 а приведена схема трехточечного генератора с емкостным делителем, называемого генератором Колпитца. Выходное напряжение снимается с дополнительной выходной обмотки LCB. На затвор транзистора подается через резистор R2 напряжение смещения, которое выбирается таким образом, чтобы уменьшить искажение формы выходного напряжения.

 

На рис. 5 б приведена схема индуктивной трехточки, называемой генератором Хартли. Для замыкания средней точки индуктивного делителя с эмиттером используется конденсатор Ссв. Сопротивления R1 и R2 обеспечивают выбор рабочей точки транзистора по постоянному току.

 

 

RС-генераторы гармонических сигналов.

Генераторы с LC-контурами нашли широкое применение на высокой частоте, однако их применение на низкой частоте осложняется низким качеством и большими габаритами катушек индуктивности. В связи с этим низкочастотные генераторы обычно используют различные RС-цепи в звеньях положительной обратной связи. Эти RС-цепи обычно имеют квазирезонансные характеристики, со сдвигом фаз между входным и выходным напряжениями, равным нулю или 180°. Две такие цепи приведены на рис. 6 Первая цепь (рис. 6 а) состоит из трех фазосдвигающих звеньев, каждое из которых обеспечивает сдвиг по фазе на 60°. В результате выходное напряжение будет сдвинуто по отношения к входному на 180°С. Для возбуждения колебаний усилитель также должен иметь сдвиг по фазе, равный 180°, т. е. должен быть инвертирующим.

Вторая цепь, изображенная на рис. 6 б, называется мостом Вина и на квазирезонансной частоте обеспечивает сдвиг по фазе, равный нулю, поэтому для возбуждения колебаний усилитель должен быть неинвертирующим.

 

 

второе звено состоит из параллельного соединения таких же R и С и имеет сопротивление

 

 

 

Мост Вина состоит из двух .RC-звеньев: первое звено состоит из последовательного соединения R и С и имеет сопротивление

откуда после подстановки Z, и Z2, найдем


Коэффициент передачи звена положительной обратной связи определяется выражением

 

 

Если выполнить условие l-(wCR)2=0, то фазовый сдвиг будет равен нулю, а b= 1/3. В этом случае частоту генератора можно будет определить по формуле

w = 1/(СR).                                            (1)

Для стабилизации амплитуды в таких генераторах используют нелинейную отрицательную обратную связь. Две схемы генераторов низкой частоты с мостом Вина и различным выполнением цепи отрицательной обратной связи приведены на рис. 7. На рис. 7 а показана схема генератора с операционным усилителем, в котором отрицательная обратная связь выполнена в виде нелинейного делителя напряжения на сопротивлениях r1 и T. Сопротивление г1 — линейное, а Сопротивление T — нелинейное. В качестве сопротивления T очень часто используют лампочку накаливания. При увеличении выходного напряжения сопротивление металлической нити лампы накаливания увеличивается, что приводит к увеличению глубины отрицательной обратной связи и, следовательно, к уменьшению усиления. В результате выходное напряжение стабилизируется на определенном уровне.

Другой способ стабилизации выходного напряжения генератора показан на рис. 7  б. В этой схеме в качестве регулируемого сопротивления используется сопротивление канала полевого транзистора с управляющим p-n-переходом. При увеличении выходного напряжения генератора увеличивается отрицательное напряжение на затворе транзистора, в результате этого его сопротивление увеличивается, что приводит к увеличению глубины отрицательной обратной связи и, следовательно, к снижению усиления.

 

Следует отметить, что в обеих схемах, приведенных на рис. 7, коэффициент усиления усилителя должен быть больше трех. Именно это значение коэффициента усиления и устанавливается при помощи регулируемой цепи обратной связи.

 

Генераторы с внутренней обратной связью (с отрицательным сопротивлением)

В рассмотренных типах генераторов цепи обратной связи отделены от усилительного элемента. Однако существует большая группа генераторов, в которых внешних цепей обратной связи нет совсем. В таких генераторах используются участки вольт-амперных характеристик различных элементов, имеющие отрицательное сопротивление. Участки с отрицательным сопротивлением (или проводимостью) имеются у некоторых типов электронных ламп, например, тетродов, туннельных диодов, динисторов и тиристоров. Если отрицательное сопротивление такого элемента больше положительного сопротивления колебательного контура, то, включив такой элемент в состав контура, можно скомпенсировать потери и тем самым создать в контуре незатухающие колебания.

На рис. 8 показан генератор на туннельном диоде VD. В состав генератора входят, кроме туннельного диода, источник питания Е и катушка индуктивности L с сопротивлением R. Вольт-амперная характеристика туннельного диода (рис. 8 б) на участке А-В имеет отрицательное дифференциальное сопротивление -(20... 100Ом). При включении питания рабочая точка вначале перемещается по ветви О-А. Достигнув точки А, из-за наличия в цепи индуктивности рабочая точка перемещается скачком в точку Б. Если напряжение источника меньше значения u2, то рабочая точка перемещается из точки Б в точку B откуда скачком возвращается в точку Г. Далее процесс повторяется. Очевидно, что напряжение питания должно выбираться из условия ul<E<u2. а сопротивление R < Rдиф. Так как скачки из точки А в точку Б и из точки В в точку Г происходят достаточно быстро, то па выходном напряжении они представлены и виде прямых линий. На участках А-Г и Б-В скорость перемещения зависит от постоянной времени RL-цепи и характеристик диода. Форма выходного напряжения приведена на рис. 9 6.

 

Кварцевые генераторы.

Кварцевые генераторы получили свое название от кристалла кварца, который используется в генераторе вместо колебательного контура. Добротность колебательного контура на кварце и его стабильность настолько велики, что достичь таких значений в схемах генераторов LC- или RC-типа просто невозможно. Так, например, стабильность частоты -RC-генераторов имеет значение около 0,1%, LC-генераторов — около 0,01%, а кварцевый генератор имеет нестабильность частоты от 10-4 до 10-5%.

Конструктивно кварцевый контур выполняется в виде кварцевой пластины с нанесенными на нее электродами. Эквивалентная схема кварцевого контура состоит из следующих элементов: L — эквивалентная индуктивность кварца, Rnc — сопротивление потерь, Сс — последовательная емкость, Ср — параллельная емкость. Такой контур имеет две резонансные частоты: резонанса напряжений и резонанса токов, причем. Эти резонансные частоты расположены очень близко друг к другу и отличаются всего примерно на  1%. В результате этого частотная характеристика кварцевого контура имеет очень острый пик и высокую добротность.

Две схемы кварцевых генераторов приведены на рис. 11. На рис. 11,а

приведена схема кварцевого генератора, предложенная Пирсом.  В  этой схеме кварц включается между стоком и затвором полевого транзистора VТ, т. е. в цепь отрицательной обратной связи. Однако на частоте резонанса кварц вносит дополнительный фазовый сдвиг на 180°, в результате чего обратная связь становится положительной.

Аналогичным образом функционирует схема кварцевого генератора, предложенная Колпитцем (рис. 11, 6). В этой схеме для облегчения возбуждения применен емкостной делитель на элементах С, и С2. В результате чего схема становится похожей на емкостную трехточку.

 

Добавить комментарий


Защитный код
Обновить