Технические дисциплины - Электроника

2. ДИОДЫ

 

Содержание

2.1. Полупроводниковые диоды с электронно-дырочным переходом (pn - переходом)

2.2. Электронно-дырочный переход (pn – переход).  Возникновение потенциального барьера. Контактная разность потенциалов

2.3. Вольтамперная  характеристика pn перехода

2.4. Влияние генерационно-рекомбинационных процессов на ВАХ pn перехода

2.5. Барьерная емкость pn перехода

2.6. Диффузионная емкость pn перехода

2.7. Переходные процессы

2.6. Пробой pn перехода

 

 

2. ДИОДЫ.

2.1. Полупроводниковые диоды с электронно-дырочным переходом                  (pn - переходом).

Простейшим полупроводниковым прибором является диод, представляющий полупроводниковый кристалл с  электронно-дырочным (pn) переходом. На рис. 2.1. приведены обозначение диода, его конструкция и диаграмма распределения примеси. Вблизи контактов, как правило, концентрация примеси и соответственно основных носителей заряда повышена. Это сделано для того, чтобы снизить сопротивление между металлическим контактом и полупроводниковой областью. Основным элементом диода является электронно-дырочный переход (pn-переход) .

 

Рис. 2.1. Полупроводниковый диод с pn-переходом: обозначение, конструкция, распределение примеси

 

Электронно-дырочный переход - основной элемент не только диодов, но и других биполярных приборов, поскольку именно электронно-дырочный переход позволяет управлять потоками носителей заряда в биполярных приборах. Электронно-дырочный переход создают в кристалле изменением типа проводимости, путем введения соответственно акцепторной и донорной примеси.

Существует большое количество способов создания pn перехода. На рис. 3.2. представлены схемы сплавной, диффузионной и эпитаксиально-диффузионной технологий.

 

 

Рис. 2.2. Схемы изготовления pn перехода различными технологическими способами.

 

При сплавной технологии электронно-дырочный переход образуется на границе раздела исходного кристалла и рекристаллизованной полупроводниковой области , в которую происходило вплавление (рис. 2.2а). На рис. 2.2б показан способ изготовления pn перехода диффузией акцепторной примеси в кристалл n-типа. Особенность технологии показанной на рис. 2.2.в в том, что диффузия осуществляется в кристалл с полупроводниковой пленкой n типа, выращенной на кристалле n+ типа специальной эпитаксиальной технологией, позволяющей сохранить структуру кристалла в пленке.

Особенность электрических характеристик диода в том, что он обладает низким сопротивлением при одной полярности приложенного к нему напряжения (плюс на аноде - прямое включение) и высоким сопротивлением при другой полярности (минус на аноде - обратное включение). Это свойство диода обеспечило ему широкое применение в выпрямителях - схемах преобразования переменного напряжения в постоянное.

На рис. 2.3. показана вольтамперная характеристика полупроводникового диода средней мощности – зависимость I(U), кривая 1.

Рис. 2.3. Вольтамперные характеристики полупроводникового диода (1) и идеального выпрямителя (2).

 

На том же рис. 2.3 приведена характеристика "идеального" ключа, который пропускает ток при положительном напряжении и не пропускает при отрицательном. Как видно из сравнения графиков, свойства полупроводникового диода близки к свойствам идеального выпрямителя, поскольку для него ток в прямом направлении может в миллионы раз быть больше тока в обратном направлении.

К основным недостаткам полупроводникового диода следует отнести: при прямом смещении - наличие области малых токов на начальном участке ("пятка") и конечного сопротивления толщи rs ; при обратном - наличие пробоя и небольшого (однако сильно возрастающего с температурой) обратного тока.

Следует обратить внимание на то, что прямая и обратная ветви вольтамперной характеристики представлены на рис. 2.3 в разном масштабе.

Рассмотрим работу диода на активную нагрузку (рис. 1.4). Соответствующая схема показана на рис. 2.4 а. Ток через диод описывается его вольтамперной характеристикой Iдиод = f(Uдиод) , ток через нагрузочное сопротивление будет равен току через диод Iдиод = Iнагр = I , поскольку соединение последовательное, и для него справедливо соотношение Iнагр = (U(t) - Uдиод)/Rн.

На рис. 2.4 показаны линии, описывающие эти функциональные зависимости: ВАХ диода и нагрузочную характеристику.

 

 

Рис. 2.4. Диаграмма, поясняющая работу диода на активную нагрузку.

 

Как видно из рисунка, чем круче характеристика диода и чем меньше зона малых токов ("пятка"), тем лучше выпрямительные свойства диода. Заход рабочей точки в предпробойную область приводит не только к выделению в диоде большой мощности и возможному его разрушению, но и к потере выпрямительных свойств.

При электротехническом анализе схем с диодами отдельные ветви ВАХ представляют в виде прямых линий, что позволяет представить диод в виде различных эквивалентных схем, см. рис. 2.5. Выбор той или иной схемы замещения диода определяется конкретными условиями анализа и расчета устройства, в котором он применяется.

Рис. 2.5. Эквивалентные схемы диода при прямом и обратном включении.

 

Выпрямительные свойства полупроводникового диода обусловлены асимметрией электрических свойств его основного элемента pn - перехода.

Диоды с pn переходом относят к биполярным приборам, поскольку в процессах переноса заряда через контактную область участвуют как электроны так и дырки.

Рассмотрим основные явления, которые приводят к возникновению на границе между p  и n областями потенциального барьера (запирающего слоя), определяющего нелинейность вольтамперной характеристики (ВАХ) диода.

 

2.2. Электронно-дырочный переход (pn – переход).  Возникновение потенциального барьера. Контактная разность потенциалов.

 

На рис. 2.6 представлены энергетические диаграммы для легированных акцепторной примесью (p тип) и донорной примесью (n тип) двух полупроводниковых кристаллов одного и того же материала, находящихся на близком расстоянии, но не взаимодействующих друг с другом.

Как это иллюстрирует диаграмма рис. 2.6 материал p и  n типа отличается положением уровней Ферми - Fp и Fn, и соответственно работой выхода Фp и Фn. За работу выхода электронов в полупроводниках принимают энергетическое расстояние от уровня Ферми до энергетического уровня соответствующего энергии электрона находящегося  в вакууме с нулевой кинетическое энергией (нулевой уровень). Эту работу выхода иногда называют термодинамической, поскольку в отличие от металла, на уровне Ферми в полупроводнике в том случае, если нет соответствующих этому уровню энергетических состояний, электроны никогда не будут находиться.

Электроны могут находиться в зоне проводимости и энергию χ необходимую для того, чтобы вывести электрон со дна зоны проводимости в вакуум  называют сродство к электрону.

Рис. 2.6. Энергетическая диаграмма: (а) изолированные p и n области,

(б) pn - переход.

 

При создании pn перехода - тесного между p и n областями тесного физического контакта (с единой кристаллической решеткой),  между областями устанавливается обмен электронами, причем из материала n типа выходят преимущественно электроны, а из материала p типа преимущественно дырки (выход из кристалла дырки соответствует входу в кристалл электрона).

 

 

Не эквивалентность потоков электронов из n в p область и из p в n область приводит к тому, что на границе раздела появляется пространственный заряд. В n области заряд будет положительный , поскольку из нее уходят “примесные” электроны и остается не скомпенсированный положительный заряд ионов донорной примеси. В p области заряд будет отрицательный, поскольку из нее уходят “примесные” дырки и остается не скомпенсированный отрицательный заряд ионов акцепторной примеси.  Таким образом на границе раздела (в pn переходе) возникает двойной заряженный слой, что иллюстрирует диаграмма рис. 2.7. При этом положительный заряд в p области равен отрицательному заряду в n области, так что образец в целом остается электронейтральным. Действительно общее число положительных и отрицательных зарядов в образце при возникновении области пространственного заряда (ОПЗ) не изменяется, однако происходит их перераспределение в локальной области pn перехода, внутри которой электронейтральность нарушается.


Рис. 2.7. Диаграмма, поясняющая возникновение области пространственного заряда (двойного заряженного слоя) в pn переходе

 

Возникшее контактное электрическое поле направлено от области с донорной примесью к области с акцепторной примесью, поэтому оно препятствует переходу электронов из n области и дырок из p. При некотором значении поля установится равновесие, когда количество зарядов переходящих навстречу друг другу одинаково. Этому электрическому полю соответствует равновесное значение контактной разности потенциалов.

Для нахождения контактной разности потенциалов, можно воспользоваться тем условием, что в неоднородных системах находящихся в равновесии уровень Ферми (химический потенциал) один и тот же для всех частей системы, как это показано на рис. 2.6 б для pn перехода, выполненного в едином кристалле.

Области, находящиеся на удалении от места контакта p и n  областей не подвержены влиянию pn перехода, поэтому их должна характеризовать энергетическая диаграмма показанная для изолированных областей рис. 2.6а. Как видно из рис. 2.6б потенциальная энергия электронов в зонах относительно нулевого уровня в вакууме изменяется только за счет возникновения в области pn перехода пространственного заряда и соответствующего ему потенциального барьера. Как видно из диаграмм рис 2.6а  и рис 2.6б величина контактной разности потенциалов равна:

,                               (2.1)

где Uк выражена в вольтах, а Fn и Fp в электронвольтах.

Возникновение двойного слоя пространственного заряда и соответствующего ему обусловленного контактным полем потенциального барьера нарушает симметрию транспорта через pn переход дырок и электронов. Действительно барьер существует только для основных носителей (nn и pp), поскольку в соседнюю область они перемещаются против сил электростатического взаимодействия с полем. Соответственно барьер смогут преодолеть только те носители nn и pp, тепловая энергия которых выше энергии потенциального барьера, т.е. носители попадающие в высокоэнергетический хвост распределения Больцмана (аналог распределения Максвелла в газах).

Чем выше высота потенциального барьера тем, меньше основных носителей сможет его преодолеть. Поскольку основные носители перемещаются через границу диффузионным механизмом их ток часто называют диффузионным, при этом следует обратить внимание (см. рис 2.7), что направления диффузионных токов, создаваемого nn и pp совпадают:              Jдиф = Jnдиф + Jpдиф.

Для неосновных носителей (np и pn) потенциального барьера нет, поскольку  направление сил их электростатического взаимодействия с контактным полем совпадает с направлением их перехода в соседнюю область, см. рис. 2.7 и рис. 2.6. Поэтому поток неосновных носителей зависит только от их концентрации в приконтактной области и не зависит от высоты барьера. Все неосновные носители, попавшие в область пространственного заряда  pn перехода будут подхвачены электрическим полем и переброшены в соседнюю область. Следует обратить внимание (см. рис 2.7), что направление тока Js , создаваемого неосновными носителями np и pn, дрейфующими в электрическом поле pn перехода совпадают:   Js = Jsn + Jsp. Поскольку суммарный ток через pn переход в отсутствии внешнего напряжения должен быть равен нулю, то  Jдиф = -Js.

Рассмотрев основные  явления, связанные с возникновением в pn переходе потенциального барьера и его влияния на транспорт носителей заряда, приступим к количественному описанию цель которого заключается в построении математической модели, которая могла бы связать электрические характеристики перехода с технологическими параметрами областей и температурой окружающий среды.

Используя соотношения, полученные в предыдущем разделе  запишем соотношения для расчета основных и неосновных носителей заряда в p и n областях через значения уровня Ферми в соответствующих областях (рис. 2.6). Обозначим равновесные концентрации индексом 0.

(2.2)

Используя (2.2) возьмем отношения nn0/np0 и pp0/pn0, после логарифмирования получим:

 



 

Добавить комментарий


Защитный код
Обновить