Технические дисциплины - Электроника

 

Содержание

 

 

4

1. ОСНОВНЫЕ ПОНЯТИЯ ФИЗИКИ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ   4

1.1. Электропроводность полупроводников. 4

1.2. Электроны в кристалле. 9

1.2.1. Энергетические зоны. Свободные носители зарядов:  электроны и дырки. 9

1.2.3. Легирование кристаллов донорной или акцепторной примесью, полупроводники "n" и "p" типа . 22

1.2.4.  Расчет концентрации носителей заряда в кристалле. 27

1.2.5. Зависимость скорости электрона от напряженности электрического поля. Понятия эффективной массы и подвижности. 39

1.2.6. Расчет электропроводности полупроводниковых кристаллов на основе рассмотренных моделей. 47

1.2.7. Неравновесные электроны и дырки. Рекомбинация неравновесных носителей заряда. 55

Диффузионный и дрейфовый токи. 58

1.2.8. Уравнение непрерывности. 60

 

 


1. ОСНОВНЫЕ ПОНЯТИЯ ФИЗИКИ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

1.1. Электропроводность полупроводников

По способности проводить электрический ток все твердотельные материалы принято делить на проводники, полупроводники и диэлектрики или изоляторы.  К группе проводников относят материалы с проводимостью            σ > 106 Ом-1см-1, к ним относятся металлы, в которых высокая проводимость обеспечивается высокой концентрацией электронов проводимости. Напротив в диэлектриках, как правило при комнатной температуре электронов очень мало и их проводимость, в основном носит ионный характер, поэтому она мала          σ < 10-10 Ом-1см-1. В промежуточную группу попадают полупроводники, которые  в зависимости от их состава и концентрации примесей могут иметь концентрацию электронов близкую к нулю (тогда они являются изоляторами) и близкую к концентрации электронов в металле (тогда они являются проводниками). Возможность изменять в широких пределах электропроводность не только технологическими методами, но и используя внешние воздействия, позволила  создать на основе полупроводников твердотельные электронные приборы.

Металлы и полупроводники помимо величины электропроводности отличаются так же и зависимостью электропроводности от температуры. В металлах электропроводность с температурой, как правило, падает почти по линейному закону .

,                   (1.1)

где T и T0 – температуры измерения (T > T0), α – температурный коэффициент.

В полупроводниках, в которых отсутствуют дефекты и примеси (их принято называть собственными) с ростом температуры проводимость растет примерно по экспоненциальному закону:

(1.2)

где σ0 – некоторая слабо изменяющаяся величина (часто ее температурной зависимостью пренебрегают), ΔE – энергия температурной активации проводимости (ее принято измерять в эВ), k – постоянная Больцмана            (8.614210-5 эВ.К-1), T -  абсолютная температура (в градусах К).  Если прологарифмировать (1.2), то получим:

(1.3)

 

 

Рис. 1.1. Зависимость электропроводности не легированных материалов от температуры

Из (1.3) видно - логарифм проводимости линейно зависит от 1/T, причем наклон прямой линии определяется величиной ΔE, поэтому для полупроводников графики электропроводности очень удобно строить  откладывая по вертикальной оси проводимость в логарифмическом масштабе, а по горизонтальной оси величину пропорциональную обратной температуре (для удобства используют масштабный множитель 1000), см. рис. 1.1.

Изменение электропроводности может быть связано изменением концентрации носителей заряда и их скорости. Как показали эксперименты в большинстве случаев в полупроводниках основным фактором является изменение концентрации носителей заряда. Особенно сильно концентрация носителей заряда зависит от концентрации введенной примеси (обычно говорят от степени легирования). На рис. 1.3 показана измеренная на образцах кремния, легированных примесью фосфора или бора, зависимость удельного сопротивления кремния ρ = 1/σ от концентрации примеси.  Из графика видно, что путем введения примеси проводимость полупроводника действительно можно изменять вплоть до проводимости близкой к металлической σ ≈ 104 (ρ ≈ 10-4).

Рис. 1.3. Влияние легирования на электропроводность кремния (пунктиром показана линейная зависимость).

 

Следует обратить внимание на тот факт, что при увеличении концентрации примеси на 9 порядков, проводимость образца возрастает на 8 порядков, т.е. существует почти линейная зависимость между проводимостью и концентрацией примеси.

 

Контрольные вопросы.

  1. 1. Каково соотношение значений проводимости для проводников, полупроводников и диэлектриков?
    1. 1. Каково соотношение значений удельного сопротивления для проводников, полупроводников и диэлектриков?
    2. 2. Как экспериментально определить к какому классу материалов относится образец: к полупроводникам или металлам?
    3. 3. По какому закону изменяется с температурой электропроводность чистых (собственных полупроводников)?
    4. 4. Как влияет введение примесей на величину и температурную зависимость электропроводности полупроводников?

1.2. Электроны в кристалле

1.2.1. Энергетические зоны. Свободные носители зарядов:  электроны и дырки.

 

Полупроводниковые кристаллы образуются из атомов, расположенных в определенном порядке. Согласно современным представлениям атомы состоят из положительно заряженных ядер вокруг которых распложены заполненные электронами оболочки. При этом каждому электрону соответствует строго определенный уровень, на котором не может находиться более двух электронов с разными значениями спина, характеризующего вращение электрона. Согласно законам квантовой механики, электроны могут находиться только в строго определенных энергетических состояниях. Изменение энергии электрона возможно при поглощении или испускании кванта электромагнитного излучения с энергией, равной разности значений энергий на начальном и конечном уровне.

При сближении двух атомов , например водорода, их орбитали начинают перекрываться и возможно возникновение связи между ними. Существует правило, согласно которому число орбиталей у молекулы равно сумме чисел орбиталей у атомов, при этом взаимодействие атомов приводит к тому, что уровни у молекулы расщепляются, при этом чем меньше расстояние между атомами, тем сильнее это расщепление.

На рис. 1.6. показана схема расщепления уровней для пяти атомов при уменьшении расстояния между ними. Как видно из графиков при образовании между атомами связей валентные электроны формируют разрешенные для электронов зоны, причем число состояний в этих зонах тем больше, чем больше взаимодействующих атомов. В кристаллах число атомов более чем  1022 см-3, примерно такое же количество уровней в зонах. При этом расстояние между уровнями становится чрезвычайно малым, что позволяет считать, что энергия в разрешенной зоне изменяется непрерывно. Тогда электрон, попавший в незанятую зону можно рассматривать как классический, считая, что под действием электрического поля он набирает непрерывно энергию, а не квантами, т.е. ведет себя как классическая частица.

 

 

Рис. 1.6. Энергетическое расщепление 1s и 2s уровней для пяти атомов в зависимости от расстояния между ними

 

При образовании кристаллов образуемые  валентными электронами  зоны  могут быть частично заполненными, свободными или полностью заполненными  электронами. При этом если между заполненными и свободными состояниями запрещенная зона отсутствует, то материал является проводником, если существует небольшая запрещенная зона, то это полупроводник, если запрещенная зона большая и электроны за счет тепловой энергии в нее не попадают, то это изолятор. Рисунок 1.7. иллюстрирует возможные конфигурации зон.

Для проводников разрешенная зона частично заполнена электронами, поэтому даже при приложении внешнего напряжения они способны набирать энергию и перемещаться по кристаллу. Такая структура зон характерна для металлов. Уровень F, разделяющий заполненную электронами и незаполненную часть зоны называют уровнем Ферми. Формально его определяют как уровень вероятность заполнения которого электронами равна 1/2.

 

 

Рис. 1.7. Возможная структура энергетических зон, создаваемых валентными электронами в кристаллах

Для полупроводников и диэлектриков структура зон такова, что нижняя разрешенная зона полностью заполнена валентными электронами, поэтому ее называют валентной. Потолок валентной зоны обозначают Ev.  В ней электроны перемещаться под действием поля (и соответственно набирать энергию) не могут, поскольку все энергетические уровни заняты, а согласно принципу Паули электрон не может переходить с занятого состояния на занятое. Поэтому электроны в полностью заполненной валентной зоны не участвуют в создании электропроводности. Верхняя зона в полупроводниках и диэлектриках  в отсутствии внешнего возбуждения свободна от электронов и если каким либо образом туда забросить электрон, то под действием электрического поля он может создавать электропроводность, поэтому эту зону называют зоной проводимости. Дно зоны проводимости принято обозначать Ec. Между зоной проводимости и валентной зоной находится запрещенная зона Eg, в которой согласно законам квантовой механики электроны находиться не могут (подобно тому как электроны в атоме не могут иметь энергии не соответствующие энергиям электронных оболочек).  Для ширины запрещенной зоны можно записать:

Eg = Ec – Ev                                 (1.4.)

В полупроводниках в отличие от изоляторов ширина  запрещенной зоны меньше, это сказывается в том, что при нагреве материала в зону проводимости полупроводника попадает за счет тепловой энергии значительно больше электронов, чем в зону проводимости изолятора и проводимость полупроводника может быть на несколько порядков выше чем проводимость изолятора, однако граница между полупроводником и изолятором условная.

Поскольку в отсутствии внешнего возбуждения валентная зона полностью заполнена (вероятность нахождения электрона на Ev = 1), зона проводимости полностью свободна (вероятность нахождения электрона на Eс = 0), то формально уровень Ферми с вероятностью заполнения ½  должен был бы находиться в запрещенной зоне. Расчеты показывают, что действительно в беспримесных бездефектных полупроводниках и диэлектриках (их принято называть собственными)  он лежит вблизи середины запрещенной зоны. Однако электроны там находится не могут, поскольку там нет разрешенных энергетических уровней.

 

Рис. 1.7. Схематическое представление бездефектного кристалла кремния.

Основные элементарные полупроводники относятся к четвертой группе таблицы Менделеева, они имеют на внешней оболочке 4 электрона.  Соответственно эти электроны находятся в S (1 электрон) и p (3 электрона). При образовании кристалла внешние электроны взаимодействуют и образуются полностью заполненная оболочка с восьмью электронами, как это показано на диаграмме рис. 1.7.

При этом атом может образовывать химические связи с четырьмя соседями, т.е. является четырежды координированными. Все связи эквивалентны и образуют тетраэдрическую решетку (тетраэдр – фигура с четырьмя одинаковыми поверхностями).

Тетраэдрическая структура свойственна кристаллам алмаза. Такие известные полупроводники как  Si и Ge  имеют структуру типа алмаза.

При уходе электрона в зону проводимости он делокализуется и может перемещаться по зоне от одного атома к другому. Он становится электроном проводимости и может создавать электрический ток. Обычно говорят: появился свободный носитель заряда, хотя на самом деле электрон не покидал кристалл, у него только появилась возможность перемещаться из одного места кристалла в другое.

На месте откуда ушел электрон условие электронейтральности нарушается и возникает положительно заряженная вакансия электрона, которую принято называть дыркой (положительный заряд обусловлен не скомпенсированным зарядом ядра).

На место откуда ушел электрон может переместиться соседний электрон, что приведет к перемещению положительно заряженной дырки. Таким образом перемещение валентных электронов заполняющих свободное  электронное состояние (запрет Паули снят) приводит к  перемещению вакансии в которой нарушено условие компенсации заряда, т.е. дырки. Вместо того, чтобы рассматривать движение валентных электронов, которых в валентной зоне чрезвычайно много рассматривают перемещение положительно заряженных дырок, которых мало и которые так же как электроны могут переносить заряд. Этот процесс поясняет рис. 1.10.

На рисунке 1.10 показан кристалл, в котором каким либо внешним возбуждением, например квантом света с hν > Eg один из электронов переброшен в зону проводимости (стал свободным), т.е. у одного из атомов  была разорвана одна из валентных связей. Тогда в кристалле помимо не связанного с атомом электрона возник положительно заряженный ион. Способность под действием поля перемещаться самого иона очень мала, поэтому ее учитывать не следует. Поскольку в кристалле атомы расположены близко друг от друга к этому иону может притянуться электрон от соседнего атома. В этом случае положительная дырка возникает у соседнего атома откуда ушел валентный электрон и т.д.  Для совершенного, не имеющего примесей и дефектов, кристалла концентрация электронов будет равна концентрации дырок. Это собственная концентрация носителей заряда ni = pi, значок i означает концентрацию носителей для собственного полупроводника (intrinsic –собственный). Для произведения концентраций электронов и дырок можно записать:

np = ni2 (1.5)

Следует отметить, то это соотношение выполняется не только для полупроводников с собственной проводимостью, но и для легированных кристаллов, в которых концентрация электронов не равна концентрации дырок.

 

 

Рис. 1.10. Схематическое изображение возникновения электрона и дырки при поглощении света

 

Направление движения дырки противоположно направлению движения электрона. Каждый электрон находящийся в валентной связи характеризуется своим уровнем. Все уровни валентных электронов расположены очень близко и образуют валентную зону, поэтому перемещение дырки можно рассматривать как непрерывный процесс, аналогичный движению классической свободной частицы. Аналогично поскольку в зоне проводимости энергетические уровни расположены очень близко, зависимость энергии от импульса можно считать непрерывной и соответственно движение электрона можно в первом приближении рассматривать как движение классической свободной частицы.

1.2.3. Легирование кристаллов донорной или акцепторной примесью, полупроводники "n" и "p" типа .

Наличие в кристалле примесей и дефектов приводит к появлению в запрещенной зоне энергетических уровней, положение которых зависит от типа примеси или дефекта. Для управления электрическими свойствами полупроводников в них специально вводят примеси (легируют). Так введение в элементарный полупроводник IV группы периодической системы элементов, например Si, примеси элементов V группы (доноров) приводит к появлению дополнительных электронов и соответственно преобладанию электронной проводимости (n - тип), введение элементов III группы приводит к появлению дополнительных дырок (p-тип).

 

Рис. 1.12. Схема образования свободного электрона и заряженного донорного атома при легировании Si элементами V группы периодической системы

 

На рис. 1.12 показана схема кристалла Si, в который введен фосфор (V группа). Элемент V группы (донор) имеет 5 валентных электронов, четыре из них образуют связи с соседними атомами Si, пятый электрон связан только с атомом примеси и эта связь слабее остальных, поэтому при нагреве кристалла этот электрон отрывается первым, при этом атом фосфора приобретает положительный заряд, становясь ионом.

(1.7)

где Ed - энергия ионизации (активации) донорного атома.

Энергия ионизации доноров, как правило, не велика (0.005 - 0.01 эВ) и при комнатной температуре они практически все отдают свои электроны. При этом концентрация электронов, появившихся за счет ионизации доноров примерно равна концентрации введенных атомов примеси и значительно превосходит собственную концентрацию электронов и дырок n>>ni, поэтому такие материалы и называют электронными материалами (n-тип).

Будем называть электроны в них основными носителями и обозначать nn, соответственно дырки будем называть неосновными носителями заряда и обозначать pn.

Рассмотрим, что происходит при введении в тот же Si элемента III группы, например B.  Элемент III группы имеет 3 валентных электрона, которые образуют связи с соседними атомами Si, четвертая связь может образовываться, если к атому B перейдет еще один электрон от одного из его ближайших соседей, см. рис. 10. Энергия такого перехода не велика, поэтому соответствующий принимающий (акцепторный) электрон энергетический уровень расположен вблизи валентной зоны. При этом атом бора ионизуется заряжаясь отрицательно, а в том месте откуда ушел электрон образуется положительно заряженная дырка, которая может участвовать в переносе заряда.

 

где ev - электрон из валентной зоны, Ea - энергия акцепторного уровня относительно потолка валентной зоны.

 



 

Добавить комментарий


Защитный код
Обновить